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Abstract. The dynamics of the quiet solar atmosphere afe Introduction

highly noniinear. Both the standing waves of solar oscillatio servations of velocity fields and brightness fluctuations of
and acoustic waves generated in the upper convection zone % . Y ) 9 . : .
the quiet solar atmosphere yield results which give evidence

come nonlinear in the atmosphere and transform into shac . ; :
. . af. the existence of standing waves in the upper atmosphere of

waves. Interactions of shock waves, the formation of contiﬁt
i

discontinuities, and interactions of shocks with these discon e Sun. Travelling waves are observed only in the photosphere

nuities will occur. The strong nonlinear dynamics of the atmg- . o - .
g y he observational findings indicate non-propagating waves. Re-

sphere should influence high ordemodes of the Sun. In this vi(-f\ws given by Deubner (1998) and Deubner & Steffens (2000)

ri f rs we shall | with fundamental properti 4 ; ;
SEries of papers we sha _dea th fu _da_ ental prope tesaoeal with this problem. However, results of the linear theory
the interaction of the interior of a star with its atmosphere. Ac-

cording to the state of numerical techniques, we must rest i&v_f_hbeetiggrse:ﬂtﬁ] ggf:gé?;ﬁ;ggr?:ﬁggg'ggﬂg;}?' ulsations
ourselves to radial oscillations or to the vertical dynamics o? y P

. . ) spherically symmetric stars is well-founded (cf., e.g. Ledoux
the atmosphere, respectively. As the nonlinear dynamics of h
atmosphere governs the problem, we use a simple equi“brigz?Nalraven 1958, Unno et al. 1989). The mathematical theory

model of the Sun or a star. For simplicity, we do not take %?]radml pglsa_tlons Is elegant provided a zero pressure bound
. . " ary condition is placed at the surface of the star. In this case,
radial model but a plane layer model. Our particular “standafd . . o .
Ne pulsation equation forms a Sturm-Liouville type eigenvalue

model" is a layer with nearly constant density in the interiorr blem. Also the mathematical theory of nonradial oscillations
and a smoothly matched isothermal atmosphere. The strucl%r%I ' ory o :
zero-pressure boundary conditions is attractive. Here, for

of this configuration is fitted to the structure of the Sun. In tt}vé:; study of higher order modes, Cowling’s approximation may
used. Further, for high ordemodes, it is sufficient to study

present paper we present the equilibrium model and solutl%nes
the outer parts of a star or the Sun by a plane layer ap-

of its linear adiabatic wave equation. The equilibrium confl%- |
roximation with constant gravity. If, however, an atmosphere is

nd lower chromosphere. In the upper chromosphere, however,

uration has been selected so, that the wave equation can

transformed to the equation of the associated Legendre fuRE>

tions. We determine the discrete eigenfrequencies, the mo&ggtched to the convection zone or if the zero pressure boundary

and the eigenfunctions of the continuous frequency spectru?ﬁ.ﬁd'tlon is replaced by a radiation condition, so that waves can
Resonances of the continuum are discussed. Also a set of B{SP?‘Q"“‘* outward_s, the spectrum becomes con_tmuous above a
crete complex frequencies exists. The corresponding waves%ergam frequency like the cut-off frequeny of the isothermal at-

influence of an isothermal corona with a discontinuous tran%i]— des Referen?:es to papers dealing withodes of ag lane
tion layer on the frequency spectrum is investigated. We fin " Pap 9w . pa

) . Iaeyer with constant gravity (the outer convection zone with an
strong resonances at frequencies between the discrete frequen

cies of the corona-free model. overlying atmosphere) are given by Schmitz & Steffens (1999).

The linear dynamics of an atmosphere are also determined

Key words: hydrodynamics — waves — Sun: atmosphere Sutﬁf resonance oscillations excited by pulses or waves. In the case
an isothermal atmosphere, the frequency of the resonance

. . . . 0
oscillations — stars: oscillations S :
oscillation is the acoustic cut-off frequency. The presence of

gravity alone does not cause a resonance oscillation. Schmitz &
Fleck (1995) have shown that the occurence of this oscillation
depends also on the form of the temperature stratification.
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The main problem of the linear theory is the fact that linayer and the radial dynamics of the sphere are closely related.
ear waves in an atmosphere become nonlinear and form shoithkis property is due to the Sturm-Liouville eigenvalue prob-
waves. This behaviour concerns running waves in the acoustim. The most significant properties of the solutions are: the
domain of the diagnostic diagram as well as standing waMashaviour of the zeros of the eigenfunctions; the orthogonal-
with frequencies below the acoustic cut-off frequency. Alsity of the eigenfunctions; and that the order of the eigenvalues
the waves of the tail of a propagating strong pulse can tram®es not depend upon the detailed internal structure and spatial
form into shock-waves (Holweg 1982). Calculations of twosymmetry. However, for a nearly unstable star wjth: 4/3 a
dimensional finite-amplitude waves performed with an apprptane approximation would fail as the plane layer is stable for
priate wave code (Schmitz 1986) always result in the formatiall values ofy.
of shocks. The linear theory works only in the limit of really In the present paper, we study the linear dynamics of an
small wave amplitudes. Also finite-amplitude standing wavesalytical model. This model is homogeneous in the interior,
in gases without an external gravity quickly form shock-wavemd is smoothly matched to an isothermal atmosphere. With
(Bechert 1940). a zero-pressure boundary condition instead of the atmosphere,

In theory, in an atmosphere, both long period evanescéimé homogeneous layer corresponds to the homogeneous com-
waves and short period acoustic waves generated by turbulergssible model of Pekeris (1938). The adiabatic wave equation
convection transform into shock waves. Then, contact discaf-the plane configuration can be reduced to the equation of the
tinuities are formed by shock-overtaking, and shocks interaagsociated Legendre functions. Thereby, all kinds of waves and
with these discontinuities. Because of the complexity of thesescillations can be described in closed form. The results of the
dynamical processes, numerical calculations of the nonlindiaear theory are the basis for investigations of the instationary
dynamics of a non-magnetic atmosphere have been restri@ed nonlinear behaviour of the model.
to purely vertical motions (e.g. Schmitz et al. 1985, Schmitz & The paper is organized as follows: In Sect. 2 we present and
Fleck 1993, Fleck & Schmitz 1993, Carlson & Stein 1998). Adiscuss the equilibrium configuration and the basic parameters.
present, it is not possible to tackle the problem of a nonlineGect. 3 deals with the adiabatic wave equation and its reduction
three-dimensional atmospheric wave field with its shock-frontis the equation of the associated Legendre functions. The gen-
and the interactions numerically. eral solution of the wave equation and some basic properties of

The one-dimensional simulations use isolated atmosphekegendre functions are treated in Sect. 4. Sect. 5 deals with the
with a given boundary condition (moving piston) at the bottondiscrete modes of the configuration. The continuous spectrum
This boundary condition determines the dynamics of the atnie-considered in Sect. 6. There, we also study the occurence of
sphere without any reaction to the motion of the atmosphererésonances. In Sect. 7 we present solutions with complex fre-
practice, downwards propagating waves often conflict with tlygiencies and comment upon their meaning. The influence of
fixed motion of the piston. the hot isothermal corona on the spectrum is analyzed in Sect. 8.

This series of papers shall deal with mutual interactior@me relations for Legendre functions are given in an appendix.
between the linear dynamics of the interior of a star and the
(nonlinear) dynamics of its atmosphere. Given the problems
just mentioned, we shall study only radial motions or radiat

pulsations. . . _ - Letz be the outwards directed geometrical coordinatéhe
From a hydrodynamical point of view, the atmosphere is thgessurep the density]” the temperature, andthe isothermal
most complicated part of a star. For this reason, we retain &sund speed. Let be half the column mass of the configuration,

plane atmosphere. As there are numerical codes for the calcdlefined bym = foz p(z) dz . The equilibrium equation reads
tion of vertically propagating shock waves and profound knowl-

edge of the linear and nonlinear dynamics of a plane atmosphéred ( 1 dp) _dp
o . . . : -] = =—4n G . (1)
it is obvious to use this atmospheric model. As, in comparisign dz dm?
with the atmosphere, the interior of the star is a linear hydrody- ) ) )
namical system, we shall describe also the interior by a plahtm this equation we obtain
approximation. Instead of the radial dynamics of a sphere, we m2
study the vertical dynamics of a plane self-gravitating layer. Thigm) = po (1 — W) , 2)
approximation enables a compact and numerically optimal for-
mulation of the (nonlinear) hydrodynamical equations and thghere M = fooc p(z) dz is half the total column mass and
gravitation by use of the column mass as an independent variable
(Schmitz & Wolf 1986). Another point of view supporting thepy = 2rGM? . (3)
plane layer approximation is the existence of the analytic model ) )
presented in this paper, which has no corresponding counterifcnow introduce the relative mass= /M. We have
in the case of spherical symmetry. _ 2

In the one-dimensional case, the vertical dynamics ofpz&x) =po(l—a7). @
plane layer and the radial dynamics of a sphere should not dihese relations are familiar as plane self-gravitating layers, and
fer widely. For linear oscillations, the vertical dynamics of th9|ay a role for the physics of the interstellar gas and for the

The equilibrium model

p dz
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Fig. 1. Equilibrium densities and temperatures tor= 0.9 and the

limiting cases = 0 ande = 1

The pressure scale height of the isothermal atmosphere is
H=H,=d/¢ - (11)

Fore = 1, the density becomes constant. Then, the thickness
of the configuratior? z is finite. In this case, we have= zy
so thatz = zg atm = M. Fore = 0 the configuration is
isothermal. Here, we obtain
p=po(l—2% with == tanh(i) (12)
which is Spitzer’s (1942) solution for the isothermal layer.

To approach the structure of a star with an isothermal atmo-
sphere we havetotake-¢ < 1. Fig. 1 displays the temperature
and the density as functions of the geometrical coordinfbe
e = 0.0, 0.9, and1.0.

In the following, we use data of the Sun: The central tem-
perature i€, = 1.5107 K, the surface gravity igo = 2.7410*
cm/<. For the temperature of the atmosphere, we Bke=
4500 K. Then, from the ratio ofy andT ., we obtain:

20

e =0.9997.

From this value, we gety = 7.610'° cm, a result in good
agreement with the radiug = 710'° cm of the Sun.

3. The adiabatic wave equation

Letwu be the velocity¢ the adiabatic sound spegtthe density,
p the pressurey the constant adiabatic exponent, ahg the
Lagrangian pressure perturbation. In Lagrangian representation,

vertical structure of rotating gaseous disks or disk-galaxies. Néwe hydrodynamic equations of vertical adiabatic motions read

we choose the following sound speed stratification: ou dp
— =—— —47Gm, (13)
a*(x) = a2(1l — ex?), with 0<e<1 (5) Ot om
whereqy is the sound speed at the center= 0. With the O _ _ 2 p? Ju (14)
equation of state of the classical ideal gas= a2 p, where ot om
a? = RT/pu, the density reads By linearization of these equations we obtain
_Po (1—$2) @:_@ 15
. . m 1 . 8Ap 2 92 8’(,&
For the geometrical coordinate= |; - dm we obtain T et (16)
m
z=2[(1 - ¢)Artanhz +ez], (") where nowe(m) andp(m) are undisturbed quantities. We have

c? = va?. The resulting wave equation of the Lagrangian pres-
sure perturbation is

8) PAp 5, ,0Ap

oz~ P om2 -

Using the equilibrium configuration of Sect. 2, we get
g(m) =47 Gm, 9) (1 ea) 82Ap_ @(1_332)282Ap
so that the surface gravity is, = 47G M. From the constant o~ ag om?
gravity g.. and the isothermal sound speegd of the atmo- Now, instead of the mass we use the relative mass and

sphere we obtain separate the time dependence:Ry|i w ¢ ] to obtain:
, d? Ap
dx?

where the effective thicknegs:, is given by

_ %
- 2rGM
The gravity stratification is

20

(17)

(18)

g 2a2
ag =ad, /(1 —¢), M:ﬁa 202?0- (10) —6%2(1—e2®)Ap=(1—2?)

(19)



4 M.P. Geyer & F. Schmitz: Radial stellar oscillations under the influence of the dynamics of the atmosphere. |

whereo is a dimensionless frequency defined by At z = 0 we have (Abramowitz & Stegun1965)
2 1+v—p
W =0%Q% with 02 =192 (20) r(—2—#
daj PI(0) = 2Hrg=1/2 cos[”(”;‘”] ’ +3+# . (32
We now denote the time-independent amplitudé\py and put F(T)
Ap(x) = p. V1 — 22 y(z) . (21) From Eqg. (31) we obtain
Here and in the following, the quantify, is an arbitrary pres- P/ (z) oc (1 — )~ #2 for x— +1. (33)

sure. The wave equation can be transformed to the diﬁerenﬂ%

equation of the associated Legendre functions m Eq. (7) we get = z (1 — ¢) Artanh z for z — oo or

xz — 1. Therefore,l — z = 2 exp(—z/H) for z — oo or

(1 - 22)? &Py 22(1 — 2?) dy x — 1whereH = z (1 — ¢) is the pressure scale height of the
dxz? dz isothermal atmosphere. Finally, we have
+ (vr+ 1) (A -2 —p?) =0, (22) PH(x) xexp(zp/2H) for z— o0o. (34)

where the degree and the ordef: are given by
5. The discrete spectrum

viv+1)=eo? and pP=1-(1-¢)o?. (23)
) Foro < o4, the parametersandy are real. Modes are selected
We obtain by the boundary condition
1 1
= — — — 2 A
v 2+2 L+deo (24) yo<—p—>0 as z— oo or z—=+£1, (35)
VP
and
which represents the behaviour of evanescent waves in an
p=+1-(1-¢€o*. (25) isothermal atmosphere. Now let us assume that 0. We
As P () = PZ"(z), we have dropped the minus sigrl'ave (Er@lyi 1953):
of the root in the expression of. The dimensionless cut-off ptu () o (15 2)"#/2 for z— +1 (36)
frequencyo, of the atmosphere is Y
and
S (26)
iV, e PrMz) o (1Fz)TH? for z—+1. (37)

. . The solution fulfilling the conditiony — 0 for x — =+1is
4. The general solution of the wave equation P #(x). Thus, in Eq. (28) we have to pyi(v, 1) = 0. This
In the following, » and . are real or complex numbers. Solucondition is fulfilled by
tions of the Legendre differential equation are the associated . .
Legendre functions of the first kin®,/*(x) and P, #(z),and =~ p=j=2n with n=01,2... (38)
the second kind@” (). We use the following representation ofye finally obtain:
the general solution:

y(z) = P *(z) with v—p=2n. (39)
y(@) = C1 [P/M(x) + C2 P71 ()] @7) : o .
Eq. (30) shows this solution is symmetric with respect.to
From the condition of symmetry(—z) = y(+x), we obtain Squaring the conditiory = j — v, i.e.
=A P(x) — f(v,— p) P ¥ 2
y(z) ([t n) PSM(x) = f(r,—p) Py H(x)]  (28) 1_(1_6)02:]._% 1+4€U2+% (40)

where A is a complex constant and
we finally obtain the relation

e ltr—p 24 v—p . wv—pl
9K
) = 2D )02 sin(=52) - (290 i o294 1)2(1— ) — 2(1 + 5+ 72)]
Details are given in the appendix. Further, we have (Gradshteyn F(GP4i+1)2—(2j+1)%=0. (41)
& Ryzhik 1980):
The roots? fulfilling the conditiony — = j = 2nis
PEH(—g) = PFH(z) for v4pu=0,2,4,.. (30)

2 -2 . . 2
for real or complexv and .. In the following, we need the 7 = 5 2@ +i+1D) -1 =62 +1)
representation (Abramowitz & Stegun 1965)

1 [1+m]ﬂ/2 - +(2+ D) V1+3e+e(e—1)(27+1)2]. (42)

Pp(z) = T( I—z 2Pr(=v, v+l B )-(31) " The second roat? fulfils the condition + pw=j.

1—p)
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mode number n Fig. 3. The pressure perturbations of the three lowest normal modes as
Fig. 2. Discrete dimensionless frequencies of a Sun-like configuratiofH.nCtIonS of the relative mass
The dashed lines indicate the cut-off frequeneig®f the atmosphere
ando. of the isothermal corona considered in Sect. 8. which gives the frequencies of the spherically symmetric, ho-
mogenous model of Pekeris (1938). The pressure perturbations
5.1. The general cage< € < 1 of the modes of the homogeneous layer are given by
. . . . . L
Fig. 2 shows the dimensionless discrete frequencies ferl A p(z) = p, /1 — 22 P}, () (47)

ande = 0.9997. We haves? = 2 forn = 0 ande = 1.0,
ando? = 1.9997 for n = 0 ande = 0.9997. Only higher or
harmonics are slightly affected by the isothermal atmosphere. d
Fore = 0.9997 (0.9998) there are29 (36) modes beneath the Ap(z) = p. (1 — °) o Pont1(@) - (48)
acoustic cut-off frequency. Reports of precise observations of o
the radial solar eigenmodes, and accurate measurements ofl he case = 0 describes Spitzer's (1942) isothermal layer.
their frequencies, are abundant in the literature (Lazrek et Bore = 0, wherev = 0, we obtain only one real value’ = 1.
1997, Toutain etal. 1998, Rabello-Soares & Appourchaux 199%ith v = 0 andy = 0, i. e. P (x) = 1, we have:
Chaplin et al. 1999, Thiery et al. 2000). Modern helioseismic
data indicate that 39 radial resonances are observed up to tHeP(2) = p« V1 — 2% . (49)
solar acoustic cut-off frequency 5.5 mHz. Knolker (1983) Th
who calculated radial pulsation frequencies of a solar moq)efl
numerically, found 34 frequencies.

The pressure perturbations of the modes are given by

e frequency of this singular mode is the cut-off frequency
the isothermal layer. Simon (1965) has studied the linear
adiabatic dynamics of this configuration.

Ap(z) = p. V1 — 22 P H(x) . (43) 6. The continuous spectrum

Fig. 3 shows the pressure perturbations of the first three modes: real frequencies above the acoustic cut-off frequency of the
The frequency of the fundamental mode of our simple modebthermal atmosphere, the spectrum is continuous. The degree
isw = 7.810~* s~1. The corresponding perioB = 2.2 his v isreal, the ordey is imaginary. Let

twice the period of the Sun.

pw=1ia with a=+/(1—¢oc2—-1. (50)
5.2. The special cases= 1 ande =0 We evaluatg(x) as given by Eq. (28). From Eq. (31) we obtain:
The case: = 1 describes a layer with constant density. For 1 14z 7ia/2 1—z
¢ = 1, wherey = 1, we obtain P (z)= T —ia) {E} 2F1(—v, vl i —=).(51)
2 .
c°=2(n+1)2n+1) withn=0,1,2, ... (44) ASoFy (., 1—ia ) = o F (., . 1+io; ) andl(¢*) = T*(¢),

the functionsPi% (z) and P, ‘*(z) are complex conjugate.

of Then, also the functionf(v, +i«) and f (v, —icr) are complex
w?=41Gpoy(n+1)(2n+1) withn =0,1,2,.... (45) conjugate. Therefore, it =i B with real B, the general solu-

, , tion y(x) is real. The result is a standing wave with the pressure
This expression corresponds to perturbation

1 .
w?=41Gpy 3 [v[n(2n+5)+3]—4] withn =0,1,2,... (46) Ap(z,t) = p. /1 — 22 y(z) sin(wt) . (52)
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positions of the discrete frequencies of the case 1. At the
discrete frequencies of the configuration with constant density,
resonances occur. Such resonances are familiar from quantum
mechanical systems.

7. Quasi-stationary waves

60 62 64 66 68 70 Now we present solutions with complex frequencies. We con-
dimensionless frequency o . .
‘ : ‘ sider only the range > 0. The pressure perturbation of a out-

going progressive wave in an isothermal atmosphere is given
by

Ap=p,exp(—z/2H +iwt—ikz). (59)

In the case of a complex frequeney also the wave numbér
is complex. We putv = (i 8 £ a)Q andk = (iq £ r) /2H.

11 12 13 14 15 16 17 An outwards travelling, time damped wave is represented by
dimensionless frequency o

Ap = p.exp(—z/2H — BQt+qz/2H tiaQt Firz/2H)(60)

Fig. 4. Resonances above the cut-off frequency for a Sun-like con-

figuration7o/Too = 3333 (¢ = 0.9997) and a configuration with with o, 3, ¢, » > 0. Written in terms of the relative massthis
To/Ts = 100. The solid dots indicate the discrete frequencies of “Lﬁ(pressmn reads

atmosphere-free layer.

Now we calculate the ratio of the amplitude in the atmosph

Ap =p.exp(—z/2H — BQt+iaQt) (1 —z) "2 (61)

th u = ¢ ¥ i r. Because of Eg. (33) we may write

and the amplitude at the center of the configuration. Inserting
Eg. (32) into the general solution (28), puttifg= 1, and using Ap = p, exp(—z/2H — 3Qt £ iaQt) P*(z) for z — 1. (62)
addition formulas of the circular functions, we get

Comparison with the general solution (28) shows that
1+v+p  1+v—0p

y(0) = — a1/2 sin(mu) T( )( ). (53) f(v,—u) = 0, as opposed to the case of real discrete modes
2 2 wheref (v, +u) = 0. Then, from Eq. (29) we obtain the condi-
For 1 = i a we obtain tion
. 2 . .
y(O):—iw_l/z sinh(ra) ‘F(1+V2+ZO¢) (54) v+u=j5=2n with n=0,1,2,.. (63)

Squaring the equation = j — v = 2n — v we finally obtain

Let us now discuss the behaviour of the solutionzfer oo the dispersion relation (41), from which now
orz — 1. From Eq. (51) we obtain

| . L4 pyias w'=ag+ ify with ag>0, >0 (64)
Pr(@) = (1 —ia) {1 - x] for @1 (%5) where
Thus, in t.he limitz — 1.we get | B oo — ; 92 4+ 1) — (1— (2 +1)2] (65)
y = fvia) 2(A=2)["* = f(v, —ia) 2(1-2)]7*.  (56)
Let y; be the amplitude of this oscillating function. We obtain(?anI
y1 = 2[f(v i), andfinallyy, = Bo = %2 (2 + 1) Vel—@j+1)2—1-3¢]  (66)
2sinh(ma)

V/cosh(ma) —cos(mv) V2 +a2|D(v+ia)|.(57)  for e(1 — €)(2j + 1)2 — 1 — 3¢ > 0. From these two roots?

“ we obtain two rootss describing time damped waves:

Letyo = |y(0)|. The ratio of the amplitude in the atmosphere

and the amplitude at the center is w=(xta+if)Q with a>0, 5>0. (67)
n \ﬁm‘p VHQ )| [cosh(ma) COb(m,) (58) The corresponding values pfgiven by Eq. (23) are
Yo ov /o P 1+V‘|‘W sinh(ra) w=qFir with ¢>0,7r>0. (68)

Therefore, solutions are

Fig. 4 shows this ratio for = 0.9997 ande = 0.99 as a func-
tion of the dimensionless frequeney The dots indicate the Ap = p,(1 — 2?)' 2 exp([-f+ia] Qt)PI " . () (69)

2n—q+ir



M.P. Geyer & F. Schmitz: Radial stellar oscillations under the influence of the dynamics of the atmosphere. |

12

0.8} ro o

order p

0.4F

0.2F

0.0:a-a DS F A N SN B N :

25 30 35 40 45
mode number n

1007‘ —— —— —— —— — ; ;J
L s 4
L]

80 ! .

g‘ F . s a q

8 . 3 D) 4

g 60; s ? : &) ;

g f___._"j' ________ a__________________,

= ]

8 L 4

< a0f -

i) [ 7

7] 4
c

S L 4

E 20 I

5 L 4

Ob-e-c—o—cha-o—c—u-.n_D_G_Q.EJ_U_Q_E_Q_'-’_Q_2_°_°_°__°;

T U NS S S O S SR RS S B U S
25 30 35 40 45 50

mode number n

Fig. 5. Steepening parametei(solid dots) and wavelength parametefig. 6. Time damping coefficient (open dots) and frequenay(heavy

r (open dots) of quasi-stationary waves as functions of the ardée

havey =g+ ir.

and the complex conjugate

Ap = p.(1—2>)Y%exp([-f —ia]Qt) PLT"

2n—q—ir

From these complex solutions, real solutions can be construc

The asymptotic form of these real solutions is
q

Ap = p,exp[——| exp[—z — Q] sin(aQt — %) (71)

z
2H 2H

The asymptotic form of the complex displaceméft, t) is

qz

&~ exp[Jri} exp[—— — BQt] exp(Li [afdt — 5

2H 2H

Fig.5 shows the parametegsandr, Fig. 6 the coefficients

anda.

solid dots) of quasi-stationary waves as functions of the ondé&We
haves = oo+ 8. The small dots indicate the real discrete frequencies
of the atmosphere-free layer.

where the above integral diverges. Such solutions cannot be
normalized. Even if we would restrict ourselves to the interior
toefc}he layer, two conditions for a complete set of proper modes
are not fulfilled: The discontinuity condition, and the no-tail
condition. Problems of proper modes of open systems are dealt
with by Ching et al. (1998).

Adiabatic waves with complex frequencies must be inter-
preted like the corresponding waves in quantum mechanics.
There, complex values of the energy are used to describe non-
stationary states of a system. In the exterior region of a leaky,
one-dimensional potential, the time-damped wave function in-
creases exponentially with respect to the spatial coordinate.
Such a state is called a quasi-stationary state, and itis pointed out

For plane convection zones with atmospheres, solutionstgét this non-integrable state approximates an instationary state
the wave equation of three-dlmensmpal waves Wlth compl@vhich is integrable. The problem is dealt with by Blochinzew
frequencies have been calculated by Hindman & Zweibel (1994p57), Macke (1959) and Landau & Lifshitz (1959). Also in

and Schmitz & Steffens (2000).

our case, quasi-stationary waves should be considered as ap-

Solutions of (general) wave equations with complex discrgg@oximations to instationary waves.
frequencies due to suitable boundary conditions are often called
quasi-normal modes. They play arole in wave equations of openrh . influence of a hot, static corona
or unbounded systems. Usually, these solutions do not form a
complete set of normal modes. We study the effect of an isothermal corona on the frequency
In our case, adiabatic oscillations with complex frequenciggectrum of the configuration. The corona is matched to the
must be interpreted as follows: For— oo, the solutions behave atmosphere by a temperature jump. The temperature of the

as corona is7T, = 1.510°% K, its mean molecular weight is
, , e = 0.6. The position of the transition layer is. =
iwt z ikz :

E(z,t) = & e/ P 72 with w=w(k). (73)  1.00390 2y = 7.61576 10 m, lying 2000 km above the po-

gition z = 1.00127 29 = 7.59576 108 m whereT = 5800 K.
Fig. 7 shows this configuration. We denote the pressure scale
heights of the corona and of the atmospherdhyandH,,, the
corresponding cut-off frequencies by andw,, or . ando,.
Let
p &k G dz o 8k — ) . (74) 1 1
0/ Ko = 57 V1—02/02 andka:ﬁ\/ayogfl, (75)

Inthe distribution sense, the eigenfunctions are orthogonal. This 1 1
does not hold for complex wave numbérsvith Re(k) > 0, e = 57 V1- 0?/og and ke = o V/o? /o7 — 1. (76)

Cc

Only for realk, the eigenfunctions of the continuous spectru
areintegrable inageneralized sensepfxy ~ poexp(— z/H)
for z — oo, we have

o0
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Fig. 7. Addition of an isothermal corona to a Sun-like configuration. g
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LeLAp o be me tLe;gtLanglan presBsure pertufrtbhatlon of thte at;nj_qg 8.Resonances above the cut-off frequency of the corona. Relative
sphere Ap, that of the corona. Because of the symmetry, | '[JQ’ressure perturbations as functions of the dimensionless frequency

sufficient to consider only the case> 0. We have at the positiorz, whereT' = 5800 K (solid line) and at the position.
—2/2H, . of the transition layer (dashed-dotted line). Dots at the abscissa mark
Apa =e 7 [Aa sin(kaz) +Bq cos(kaz)] for w > wa, (77) the discrete frequencies of the corona-free model.

Ap, = e */?He[ A, sin(k.z)+ B, cos(kez)] for w > we, (78)
Without the corona, the behaviour of the eigenfunctions in

Ap, = e~/ e [0 e % 4 D, etre?)] for w < w,, (79) the atmosphere is given by

Ape = e=*/2He O =% for w < w, . (80) Ap, = Cpexp(—z/2H, — Kqz) for w=wa, . (81)

The divergent solutions behave as
The amplitudesA,, B,, C,, D, are related to the param-
eters of the solutions (43) and (52). The dimensionless cut-Ofpa = Daexp(=2/2Ha + kaz) for w# wan . (82)
frequencies of the corona and the atmosphererare 2.236  When the atmosphere is matched by a corona, these solutions
ando, = 57.735. appear in the atmosphere and dominate the total solution.
Three cases have to be considered:
a)w < w. . In this case, the pressure perturbation of t Conclusions
corona is given by Eg. (80). As can be seen from Fig. 2, only
the fundamental mode is left. By the existence of the corona e have presented a simple, one-dimensional stellar model, and
frequency and the form of this mode are slightly changed. have solved its linear adiabatic wave equation. The equilibrium
b) w, < w . In this case, the waves are acoustic in the atonfiguration consists of an essentially homogeneous layer with
mosphere and in the corona. The pressure perturbation of éh@noothly matched isothermal atmosphere. The plane approx-
atmosphere is given by Eq. (77), that of the corona by Eq. (78pation enables application of numerical codes written for the
The amplitudesd,, and B, of the atmospheric parts are fixedcalculation of the dynamics of plane atmospheres. Its also leads
the amplitudesA,. and B, have to be determined by the condito an adiabatic wave equation the solutions of which can be
tions for continuity. Therefore, the solution in the atmosphegiven in closed form.
is not affected by the corona. The resonances shown in Fig. 4 The plane configuration was fitted to the structure of the
are unchanged. Sun. In this case, the number of discrete pulsation frequen-
C)w. < w < w, - In this case, waves are evanescent ities of the layer roughly equals the number of the frequencies
the atmosphere and oscillatory in the corona. The frequerafyradial pulsations of the Sun. We find that the frequencies
spectrum is continuous. The pressure perturbation of the atrnbthe atmosphere-free homogeneous layer are changed only
sphere is given by Eg. (79), that of the corona by Eq. (78). Nawarginally by the addition of the atmosphere. Practically, only
the solution in the atmosphere is affected by the existenceadfew frequencies immediately below the cut-off frequency are
the corona. We have determined the quantitigsB., C,, and shifted.
D,, by the conditions for continuity. Finally we have studied The continuous spectrum above the acoustic cut-off fre-
the ratio of the amplitudes in the atmosphere and at the centgrency shows resonances. The frequencies of the resonances
Fig. 8 shows this ratio at the transition layer and’at= 5800 nearly coincide with the corresponding frequencies of the
K. atmosphere-free configuration. However, the resonances are not
The dots at the abscissa mark the discrete frequencies ofdtreng so that they problably do not play a significant role.
corona-free model. The resonances are maximum at the inter-There is an infinite number of discrete complex frequen-
mediate positions. The explanation is simple: cies with real parts above the acoustic cut-off frequency. The
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time-dependent solutions belonging to these frequencies repre-
sent damped oscillations with outwards travelling atmospheric
waves. Such solutions are common in the theory of open or Ufr*(—) = cos([v & ] w) P* ()
bounded systems. They are not proper modes as they are not nor-
malizable and do not form a complete set of basis functions. As — = sin([v £ p] 7)) QEH(x) (A.5)
in the case of quantum-mechanical systems these solutions are T
interpreted as limiting-cases of instationary waves. The physi¢@radshteyn & Ryzhik 1980) for real or complexand ..
meaning of these solutions should form the subject of further
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Appendix A: Relations for Legendre functions
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Fleck B., Schmitz F., 1993, A&A 273, 671
is not symmetric. To construct a symmetric solution, we u$gadshteyn I.S., Ryzhik 1.M., 1980, Tables of Integrals, Series, and
the conditon% = 0 atz = 0. We have (Gradshteyn &  Products. Academic Press, New York

Ryzhik 1980, Abramowitz & Stegun 1965): Hindman B.W., Zweibel E.G., 1994, ApJ 436, 629
Holweg J.V., 1982, ApJ 257, 345
p ) F(2 +v+pu Knolker M., 1983, Ph.D. Thesis, Freiburg i. Br.
+ . . 2 Landau L.D., Lifshitz E. M., 1959, Quantum Mechanics. Pergamon
. P0) = 2Mﬁ sm[i (v+ w)] 711 50— (A.2) Press. London
(T) Lazrek M., Baudin F., Bertello L., et al., 1997, Solar Physics 175, 227
. . Ledoux P., Walraven Th., 1958, In:{Kjge S. (ed.) Handbuch der
Therefore, the condition for symmetry gfz) is Physik. Vol. 51, Springer, Berlin, Heidelberg
24 v+ Macke W., 1959, Quanten. Akademische Verlagsgesellschaft, Leipzig
1 X
- M=) Pekeris C., 1938, ApJ 88, 189
oM sin[5 v+ 72— Rabello-Soares M. C., Appourchaux T., 1999, A&A 345, 1027
I‘(iﬂ) Simon R., 1965, Ann. d’Ap. 28, 40
2 Schmitz F., 1986, A&A 166, 368
24+v—p Schmitz F., Uimschneider P., Kalkofen W., 1985, A&A 148, 217
T F<T) Schmitz F., Fleck B., 1993, A&A 279, 499
+C2 270 sin[o (v — p)] — - =0 (A-3)  Schmitz F., Fleck B., 1995, A&A 301, 483
M=) Schmitz F., Steffens S., 1999, A&A 344, 973
Schmitz F., Steffens S., 2000, A&A, 356, 319
We get: Schmitz F., Wolf B.E., 1986, A&A 156, 289
. . . Spitzer L. Jr., 1942, ApJ 95, 329
o, — _ 2sinls (v ] D) D) (A.g) Thiery S, Boumier P., Gabriel AH., etal., 2000, A&GA 355, 743
271 sin[T (v — p)] D(2E=4) D=2 Toutain T., Appourchaux T., Bhlich C., et al., 1998, ApJ 506, L147

o ] ~ Unno W., Osaki Y., Ando H., et al., 1989, Nonradial oscillations of
Mu|t|p|y|ng Eq (Al) by the denom'nator CﬂQ, we 0bta|n stars. University Of Tokyo Press

Eq. (28). Eq. (30) follows from



